

光学仿真经典案例集

案例目录和简介(第二册)

注:"含讲解"是指建模和仿真全过程录制了一个讲解视频,该视频带有语音讲解, 为零基础视频,比较详细; "含演示"是指建模和仿真全过程录制了一个演示视频,该视频没有声音。

目录

021 - COMSOL 光的折射(零基础教学型案例,含演示,35元)2
022 - FDTD 薄膜的透反射率(零基础教学型案例,含演示,35元)
023 - COMSOL 薄膜的透反射率(零基础教学型案例,含演示, 35 元)4
024 – FDTD MIM 波导双微环谐振器(仅模型文件, 30元)5
025 - COMSOL 周期性结构的吸收率(仅模型文件, 30元)6
026 – FDTD 超表面折射率传感器(仅模型文件, 90元)7
027 – COMSOL 石墨烯超表面 THz 吸收器(含演示, 60 元)11
028 – FDTD 超材料 Fano 共振(含演示, 50 元)13
029-FDTD 用代码绘制圆角三角形结构(仅模型文件, 15元)14
030 – Matlab 石墨烯的光学常数计算代码(Matlab 文件+参考文献, 299 元)15
031-[自编软件]石墨烯的光学常数计算软件(exe 应用程序,免费试用版)19
032 – Matlab VO ₂ 的光学常数计算代码(Matlab 文件+参考文献, 189 元)22
033 – [自编软件] VO2 的光学常数计算软件(exe 应用程序,免费试用版)27
034-COMSOL 编写代码绘制几何:小球随机嵌在大球中(仅模型文件,30元)32
035 - COMSOL 编写代码绘制几何:小球密排在大球表面(仅模型文件,30元)36
036 – FDTD 纳米线的光散射(仅模型文件,免费)40
037 - COMSOL 纳米线的光散射(仅模型文件,免费)41
038 – FDTD MIM 波导电磁感应透明(含演示, 50 元)42
039-COMSOL 三层薄膜的反射率(含讲解, 50元)44
040 - COMSOL 等离激元超透镜(含演示, 75 元)45

021 - COMSOL 光的折射(零基础教学型案例,含演示,35元)

基本介绍:

- **主要内容**:用 COMSOL 做了光在两种介质分界面上的折射,将模拟得到的反射率、透射率与理论结果比较,验证了折射定律(Snell 定律);
- 基于 COMSOL 频域求解,使用的软件版本为 COMSOL 5.4 (5.4.0.225);
- 计算所需的内存: 4 GB;
- 涉及的内容:端口、周期性边界条件等;
- 绘制了: 透反射率随入射角的关系图;
- 建模过程录制了时长为 7 min 的演示视频(没有声音)。

包含的文件截图:

▶ 题目&结果.pdf
▶ 光的折射(计算透反射率).mph
▶ 滴示视频.mp4
■ 结果对比图.png

详细描述:

题目:如右图所示,考虑光在平面边界上的反射和折射。 入射光是线偏振光,电场 *E* 在入射平面内偏振(TM 偏振)。 介质 1 是空气(*n*₁=1),介质 2 的折射率 *n*₂ 是 2.4。假设入射 光波长为 500 nm,计算不同入射角 *θ*_i下的透反射率。

理论上的反射率和透射率可以用以下公式(菲涅尔公式) 来解析计算,检查模拟结果是否符合理论值。

$$R_{\rm TM} = \left(\frac{n_2 \cos \theta_{\rm i} - n_1 \cos \theta_{\rm t}}{n_2 \cos \theta_{\rm i} + n_1 \cos \theta_{\rm t}}\right)^2 \qquad T_{\rm TM} = \frac{4n_1 n_2 \cos \theta_{\rm i} \cos \theta_{\rm t}}{\left(n_2 \cos \theta_{\rm i} + n_1 \cos \theta_{\rm t}\right)^2}$$

计算的内容和结果:

1、根据菲涅尔公式解析计算出来的 透反射率随入射角的关系:

2、COMSOL 的计算结果:

TM偏振光

介质1(空气)

介质2(n2=2.4)

淘宝店铺: <u>https://shop511834854.taobao.com/</u>

022 - FDTD 薄膜的透反射率(零基础教学型案例,含演示,35元)

基本介绍:

- 主要内容:用 Lumerical 做了光正入射到薄膜时的透反射率;
- 基于 Lumerical FDTD Solution 求解,使用的软件版本为 Lumerical 2018a;
- 计算所需的内存: 4 GB;
- 涉及的内容: 自定义材料、平面光源、功率监视器、周期性边界 等;
- 绘制了: 透反射率随波长的变化关系;
- 建模过程录制了时长为 8 min 的演示视频(没有声音)。

包含的文件截图:

详细描述:

如右图所示,在玻璃上镀两层薄膜。

- 第一层薄膜的厚度(*d*₁)为85 nm、折射率(*n*₁)为1.46;
- 第二层薄膜的厚度(d₂)为15nm、复折射率(n₂=n+ki)
 不是常数,而是一个与波长相关的函数;
- · 玻璃的折射率 (n_s) 为 1.536。

波长为 400 ~ 700 nm 范围内的线偏振光垂直入射,发现 反射率几乎为零,也就是说入射光除了被薄膜吸收一部分以 外,几乎全透射了,所以这相当于是一个抗反射图层。

计算的内容和结果:

1、期望得到的结果(透反射率):

2、本例计算出的结果 (透反射率):

备用主页: https://mbd.pub/o/opt simul/work

淘宝店铺: <u>https://shop511834854.taobao.com/</u>

023 - COMSOL 薄膜的透反射率(零基础教学型案例,含演示,35元)

基本介绍:

- 主要内容:用 COMSOL 做了光正入射到薄膜时的透反射率;
- 基于 COMSOL 频域求解,使用的软件版本为 COMSOL 5.4 (5.4.0.225);
- 计算所需的内存: 4 GB;
- 涉及的内容: 自定义材料、端口、周期性边界 等;
- 绘制了: 透反射率随波长的变化关系;
- 建模过程录制了时长为 10 min 的演示视频(没有声音)。

包含的文件截图:

详细描述:

如右图所示,在玻璃上镀两层薄膜。

- ・ 第一层薄膜的厚度(*d*₁)为85nm、折射率(*n*₁)为1.46;
- 第二层薄膜的厚度(d₂)为15nm、复折射率(n₂=n+ki)
 不是常数,而是一个与波长相关的函数;
- · 玻璃的折射率 (n_s) 为 1.536。

波长为 400 ~ 700 nm 范围内的线偏振光垂直入射,发现 反射率几乎为零,也就是说入射光除了被薄膜吸收一部分以 外,几乎全透射了,所以这相当于是一个抗反射图层。

计算的内容和结果:

1、期望得到的结果(透反射率):

2、本例计算出的结果 (透反射率):

- 备用主页: <u>https://mbd.pub/o/opt_simul/work</u>
- 淘宝店铺: <u>https://shop511834854.taobao.com/</u>

024 – FDTD MIM 波导双微环谐振器(仅模型文件, 30 元)

基本介绍:

- 主要内容:根据发表在 Sensors 上的论文《Plasmonic Multichannel Refractive Index Sensor Based on Subwavelength Tangent-Ring Metal-Insulator-Metal Waveguide,作者: Zicong Guo 等》,用 Lumerical FDTD 重复了其中的 Fig.2(b-d)、Fig.3(a);
- 基于 Lumerical FDTD Solution 求解,使用的软件版本为 Lumerical 2016a;
- 计算所需的内存: 1 GB;
- 涉及的内容: 2D-FDTD、MIM 波导中平面光源的使用、场监视器、透射率监视器 等;
- 绘制了:透射率随波长的变化关系、磁场分布、输出光的相位响应;
- 本案例仅包含模型文件,但有一个如何运行仿真的简单说明。

包含的文件截图:

➡ Plasmonic Multichannel Refractive Index Sensor Based on ➡ 运行计算的方法.pdf ◙ MIM_doublering.fsp

详细描述:

如右图所示,在直通道"金属-介质-金属"(MIM)波导旁边 放置两个微环。

直通道的宽度为 50 nm, 微环的宽度为 20 nm, 两个微环的 内径分别为 40 nm 和 60 nm。

研究波导中的光经过微环后的透射率和相位变化。

计算的内容和结果:

备用主页: <u>https://mbd.pub/o/opt_simul/work</u>

淘宝店铺: https://shop511834854.taobao.com/

025 - COMSOL 周期性结构的吸收率(仅模型文件, 30 元)

基本介绍:

- 主要内容:根据发表在 *Scientific Reports* 上的论文《Strong and highly asymmetrical optical absorption in conformal metal-semiconductor-metal grating system for plasmonic hot-electron photodetection application,作者: Kai Wu 等》,用 COMSOL 重复了其中的 Fig.3(1)、 Fig.4(b)、Fig.4(d)、Fig.4(f);
- 基于 COMSOL 频域求解,使用的软件版本为 COMSOL 5.3 (5.3.0.223);
- 计算所需的内存: 4 GB;
- 涉及的内容: 全局参数、组件耦合-积分、变量、自定义材料、端口、周期性条件、自定 义网格、对波长的扫描 等;
- 绘制了: 上层金属和下层金属的吸收率、吸收功率密度分布;
- 本案例仅包含模型文件。

包含的文件截图:

<mark>™</mark> Strong and highly asymmetrical optical absorption ● 光栅吸收率.mph ■ 计算结果.png

详细描述:

如上图所示,由 Au/ZnO/Au 三层材料构成的光栅放置 在 SiO₂ 衬底上。图中 Λ =600 nm、 d_1 =60 nm、 d_2 =4 nm、 d_3 =40 nm、w=400 nm。在波长为 600~800 nm 的 TM 光 照射下,计算上下两层金对入射光的吸收率。

对特定区域计算吸收率需要在软件中对该区域内的吸收功率密度(单位 W/m³)进行积分,得到该区域的吸收功率(单位 W),然后除以入射光功率得到吸收率。

计算的内容和结果:

备用主页: <u>https://mbd.pub/o/opt_simul/work</u>

淘宝店铺: https://shop511834854.taobao.com/

026 - FDTD 超表面折射率传感器(仅模型文件, 90元)

基本介绍:

- **主要内容**:根据发表在物理学报上的论文《X-两环结构的光学特性研究,作者:潘庭婷等》,用 Lumerical FDTD 重复了其中的所有内容(共 24 张图);
- 基于 Lumerical FDTD Solution 求解,使用的软件版本为 Lumerical 2018a;
- 计算所需的内存: 2 GB;
- 涉及的内容:在 Sructure group 中自己编写脚本构建复杂结构、自定义网格、透射率监视器、在 Analysis 分析组中自己编写脚本计算 2D 电荷分布、参数扫描、在 Script Editor 中自己编写脚本画组合图 等;
- **绘制了**:不同结构参数的透射率、不同结构参数的电场分布、电荷分布、当该结构用作 传感器时的灵敏度(共 24 张图);
- 本案例仅包含模型文件,但有一个如何运行的简单说明。

包含的文件截图:

详细描述:

图1 结构模型 (a) X-两环的周期性结构; (b) X-两环的单个周期

如上图所示,由 Au 材料制成的超表面放置在 SiO2 衬底上。图中,外环内直径 R2=

备用主页: <u>https://mbd.pub/o/opt_simul/work</u>

淘宝店铺: <u>https://shop511834854.taobao.com/</u>

260 nm、内环内直径 R_1 =180 nm, X 的臂长 L=120 nm、角度 θ =90°, 内外环及 X 的宽度 均为 20 nm、厚度 H 均为 60 nm、两环之间的距离 = 20 nm, 周期 P=400 nm。

本文模拟过程中采用 Drude 模型,可以表示为:

$$\varepsilon_{Au} = 1 - \frac{\omega_p^2}{\omega(\omega + i\gamma)}$$

利用 FDTD 方法建立模型,采用波长范围为 400~3000 nm 的平面波,沿 z 方向向下 垂直入射金属表面,偏振方向沿 x 方向。x和y方向上设置成周期边界条件(periodic),z 方 向设置为吸收边界条件(PML)。

为了进一步分析 X 一两环结构的共振特性,针对相关模型参数: X 的臂长 、内外环的 距离 *t*,内外环宽度 、周期 *P*、环数、X 所呈的角度及环境折射率的改变进行仿真对比,得 到了明显的光学响应规律,为实现共振谷波长的可调控提供了有效途径。

计算的内容和结果:

(转下页)

如需购买案例请到作者个人主页:<u>http://opt-simul.com/</u> 备用主页:<u>https://mbd.pub/o/opt_simul/work</u> 淘宝店铺:<u>https://shop511834854.taobao.com/</u>

(转下页)

如需购买案例请到作者个人主页:<u>http://opt-simul.com/</u> 备用主页:<u>https://mbd.pub/o/opt_simul/work</u> 淘宝店铺:<u>https://shop511834854.taobao.com/</u>

备用主页: <u>https://mbd.pub/o/opt_simul/work</u>

淘宝店铺: https://shop511834854.taobao.com/

027 - COMSOL 石墨烯超表面 THz 吸收器(含演示, 60 元)

基本介绍:

- **主要内容**: 根据发表在 *Optics Express* 上的论文《Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces, 作者: Nanli Mou 等》, 用 COMSOL 重复了 其中的 Fig.2、Fig.3;
- 基于 COMSOL 频域求解,使用的软件版本为 COMSOL 5.4 (5.4.0.225);
- 计算所需的内存: 8 GB;
- 涉及的内容:全局参数、二维材料-石墨烯、过渡边界条件、端口、周期性条件、自定义 网格、对波长的扫描、对数据集的操作(绘制三维结构内部切面上的场) 等;
- 绘制了: 吸收率曲线、用二维绘图组绘制三维结构内部切面上的场;
- 建模过程录制了时长为 22 min 的演示视频(没有声音)。

包含的文件截图:

详细描述:

如上图所示,基本结构是 Au/SiO₂ 衬底上的同心环形石墨烯超表面。 $a = 5.5 \ \mu m, b = 4 \ \mu m, c = 2.5 \ \mu m, d = 2.2 \ \mu m, t = 28 \ \mu m, L = 15 \ \mu m$ 。

石墨烯是一种二维材料,厚度仅有一个原子。石墨烯的电导率一般用 Kubo 公式描述, 在本文中,由于研究的波段是 THz,所以可以将石墨烯的电导率近似为 Drude 模型。

本案例演示了如何在 comsol 中创建二维材料, 计算了频率为 0.5~2.5 THz 的入射光下 该超表面的吸收率和电场分布。

计算的内容和结果:

(转下页)

如需购买案例请到作者个人主页:<u>http://opt-simul.com/</u> 备用主页:<u>https://mbd.pub/o/opt_simul/work</u> 淘宝店铺:<u>https://shop511834854.taobao.com/</u>

备用主页: <u>https://mbd.pub/o/opt_simul/work</u>

淘宝店铺: <u>https://shop511834854.taobao.com/</u>

028 – FDTD 超材料 Fano 共振(含演示, 50 元)

基本介绍:

- **主要内容**:根据发表在 *Physical Review Letters* 上的论文《Plasmon-Induced Transparency in Metamaterials,作者: Shuang Zhang 等》,用 Lumerical 重复了其中的 Fig.2b、Fig.2c;
- 基于 Lumerical FDTD Solution 求解,使用的软件版本为 Lumerical 2018a;
- 计算所需的内存: 4 GB;
- 涉及的内容: 在 structure group 中编写脚本画几何结构、TFSF 光源、反对称边界条件、 自定义网格、点监视器 等;
- 绘制了: Fano 共振曲线、电场分布;
- 建模过程录制了时长为 20 min 的演示视频(没有声音)。

包含的文件截图:

详细描述:

如上图所示,超表面的基本单元由三个 Ag 纳米棒 组成。右侧纳米棒的长宽分别为 128 nm 和 50 nm;左侧 两个纳米棒的长宽分别为 100 nm 和 30 nm;左侧两个纳 米棒的间距为 30 nm;纳米棒的厚度均为 20 nm;图中 *d* = 40~100 nm。图中的红色箭头是电场探针。

在波长为 300~600 nm 的平面光正入射下,不同的 d 对应不同的法诺线形。

计算的内容和结果:

备用主页: <u>https://mbd.pub/o/opt_simul/work</u>

淘宝店铺: <u>https://shop511834854.taobao.com/</u>

029 – FDTD 用代码绘制圆角三角形结构(仅模型文件, 15 元)

基本介绍:

- **主要内容**:在 structure group 中用脚本画了一个圆角三角形结构;
- 基于 Lumerical FDTD Solution, 使用的软件版本为 Lumerical 2018a;
- 计算所需的内存:无;
- 涉及的内容: 在 structure group 中编写脚本画一个圆角三角形结构;
- 本案例仅包含模型文件。

包含的文件截图:

▼ test.fsp
 ■ 【其他您可能感兴趣的仿真案例】.png
 ■ 参数说明.png

详细描述:

如上图所示,该结构是一个圆角的三角形柱体。三角形的边长为 *a*₀、三个角的圆角半 径为 *r*₀。

在结构组里可以方便地改动这种圆角三角形的参数,如下图所示。

						/ / /
operti	es Script	Rotations			/	
Origin					/	,
v (nm)	0				7 (m) 0	
A (1007)	0		y (Int) 0			
🗹 us	e relative coord	inates			Y.L	
User pr	roperties					
# ^	Name	Туре	Value	Uni	t	
1	[1] a0	Length	180	nm	边长	<u>¥</u> aa
2	[1] t0	Length	10	nm	厚度	Remove
3	[1] r0	Length	30	nm	圆角的半径	Move up
4	ss 📃	Number	10		圆弧的精细度,越高越	好
5	📑 material	Material	<object defined="" dielectric=""></object>		材料	Move <u>d</u> own
6	index	Number	1.45		折射率	
		*如果 用我[么我[material为<0bject def 们定义的数值,如果materi 们定义的index不起作用	.>, al选	则材料的折射率使 选择了特定材料,那	

如需购买案例请到作者个人主页:<u>http://opt-simul.com/</u> 备用主页:<u>https://mbd.pub/o/opt_simul/work</u> 淘宝店铺: https://shop511834854.taobao.com/

030 – Matlab 石墨烯的光学常数计算代码(Matlab 文件+参考文献, 299 元)

基本介绍:

- 主要内容: 基于 Matlab 编写了 Kubo 公式及其 4 种近似公式的计算代码;
- 计算所需的内存:无;
- 本案例包含 Matlab 程序文件和参考文献。

包含的文件截图:

详细描述:

石墨烯(Graphene)由于其优异的可调谐性能,是近几年的热门研究对象。在您的研究中加入石墨烯调谐,有望显著提升论文档次。

计算石墨烯光学常数(电导率、介电常数、折射率)的 Kubo 公式比较复杂,正确计算 该公式耗时耗力。

为此,本案例基于 Matlab 软件编写了石墨烯光学常数的 5 种常用公式的计算程序,这 5 种公式分别为:

Kubo 公式 Hanson 提出的近似公式 Falkovsky 提出的第一种近似公式 Falkovsky 提出的第二种近似公式 Drude 模型近似公式

这5种公式分别写成 Matlab 的函数,可以方便地调用。以 Kubo 公式为例,程序截图如

如需购买案例请到作者个人主页:<u>http://opt-simul.com/</u> 备用主页:<u>https://mbd.pub/o/opt_simul/work</u>

淘宝店铺: <u>https://shop511834854.taobao.com/</u> 下,注释中详细介绍了每个参数的含义及参考文献列表:

±1	Gra	aphene_Kubo.m 🗶 Graphene_Falkovsky1.m 🗶 Graphene_Falkovsky2.m 🗶 Graphene_Hanson.m 🗶 Graphene
1	Ę	<pre>function [sigma, epsilon, index] = Graphene_Kubo(freq, mu_c, Gamma, T, t_g, N_g)</pre>
2		
3	þ	% *** 本函数基于Kubo公式 *************************
4		% *** 输入参数说明: ************************************
5		% freq - 频率,单位[THz]
6		% mu_c - 化学势,单位[eV],取值范围为 -3[eV]~3[eV]
7		% Gamma - 散射率,单位[meV]
8		% T - 温度,单位[K],取值范围为 100[K]~3000[K]
9		% t_g - 单层石墨烯厚度,单位[nm]
10		% N_g - 石墨烯层数
11		% solooloolooloolooloolooloolooloolooloolo
12		% *** 输出参数说明: ************************************
13		% sigma - 面内电导率,单位为[S]
14		% epsilon - 相对介电常数
15		% index - 折射率
16		% spappopologopologopologopologopologopologopologopologopologopologopologo
17		% *** 参考文献: ************************************
18		% [1] Eq. 13 in "V. P. Gusyala and a compare and the compare and the compare and the compare and the second second
19		% [2] Eq. 5.11 in "V. P. Guiner and a management of the second state of the second sta
20		% [3] Eq. 8 in "L. A. Falk(and have a second by the secon
21		% [4] Eq. 1 in "L. A. Falk(
22		% [5] Eq. 1 in "L. A. Falk(
23		% [6] Eq. 1 in "G. W. Hanson J. Band, Band Band, Band Band, Band, Band, Band, Band, Band, Band, Band, Band, Band
24	-	% stologologologologologologologologologolo
25		

本案例还给出了两个例子,分别名为"example1.m"和"example2.m"(见前面的文件目 录截图),以展示这 5 个函数的用法。

- · "example1.m"对比了这 5 种公式在 THz 波段的计算结果,结果表明 5 种公式计算结果完全相同;
- · "example2.m"利用 Hanson 的公式计算了石墨烯在 3~8 THz 范围内不同化学势的介 电常数,并与论文《A perfect absorber made of a graphene micro-ribbon metamaterial》对 比,计算结果与论文中的图完全一致。

两个例子的代码截图和结果图转到下页中展示。

(转下页)

如需购买案例请到作者个人主页:<u>http://opt-simul.com/</u> 备用主页:<u>https://mbd.pub/o/opt_simul/work</u> 淘宝店铺:<u>https://shop511834854.taobao.com/</u> example1.m 的代码:


```
example1.m × +
        freq = 3:0.05:8; % 频率(THz)
 1 -
        mu_c = 0.3;
                          % 化学势 (eV)
 2 -
                          % 散射率 (meV)
        Gamma = 0.5;
 3 -
        T = 300;
                          % 温度(K)
 4 -
                          % 单层石墨烯厚 (nm)
 5 —
        t_g = 0.335;
                          % 石墨烯层数
        N_g = 1;
 6 -
 7
        % 下面是 5 种不同的公式计算石墨烯的电导率、介电常数、折射率
 8
 9 -
        [sigma1, epsilon1, index1] = Graphene_Kubo( freq, mu_c, Gamma, T, t_g, N_g );
10 -
        [sigma2, epsilon2, index2] = Graphene_Falkovsky1( freq, mu_c, Gamma, T, t_g, N_g );
11 -
        [sigma3, epsilon3, index3] = Graphene_Falkovsky2( freq, mu_c, Gamma, T, t_g, N_g);
        [sigma4, epsilon4, index4] = Graphene_Hanson( freq, mu_c, Gamma, T, t_g, N_g );
12 -
13 -
        [sigma5, epsilon5, index5] = Graphene_Drude( freq, mu_c, Gamma, T, t_g, N_g);
14
15
        % 画图:
        figure; hold on;
16 -
17 -
        plot(freq, real(sigma1));
18 -
        plot(freq, real(sigma2));
19 -
        plot(freq, real(sigma3));
20 -
        plot(freq, real(sigma4));
21 -
        plot(freq, real(sigma5));
22 -
        legend(["Kubo", "Falkovsky1", "Falkovsky2", "Hanson", "Drude"]);
23
24 -
        figure; hold on;
25 -
        plot(freq, imag(sigma1));
26 -
        plot(freq, imag(sigma2));
27 -
        plot(freq, imag(sigma3));
28 -
        plot(freq, imag(sigma4));
29 -
        plot(freq, imag(sigma5));
30 -
        legend(["Kubo", "Falkovsky1", "Falkovsky2", "Hanson", "Drude"]);
31
```

example1.m 绘制的结果:

(转下页)

如需购买案例请到作者个人主页:<u>http://opt-simul.com/</u>备用主页:<u>https://mbd.pub/o/opt_simul/work</u> 淘宝店铺:<u>https://shop511834854.taobao.com/</u> example2.m 的代码:

example1.m × example2.m* × + freq = 3:0.05:8; % 频率(THz) 1 -% 化学势 (eV) 2 %mu_c = 0.05; 3 -Gamma = 0.1; % 散射率 (meV) % 温度 (K) T = 300: 4 -% 单层石墨烯厚(nm) 5 t_g = 1; N g = 1;% 石墨烯层数 6 -7 8 figure; hold on; 9 -□ for mu_c = 0.05:0.05:0.2 10 -[sigma, epsilon, index] = Graphene_Hanson(freq, mu_c, Gamma, T, t_g, N_g); 11 plot(freq, real(epsilon)*1e-3); 12 -- end legend(["muc = 50 meV", "muc = 100 meV", "muc = 150 meV", "muc = 200 meV"], ... 13 -'location', 'southeast'); 14 15 xlabel("freq/THz"); ylabel("Re(epsilon) × 10^-3"); 16 17 figure; hold on; 18 -□ for mu_c = 0.05:0.05:0.2 19 -[sigma, epsilon, index] = Graphene_Hanson(freq, mu_c, Gamma, T, t_g, N_g); 20 plot(freq, imag(epsilon)); 21 end 22 legend(["muc = 50 meV", "muc = 100 meV", "muc = 150 meV", "muc = 200 meV"]); 23 xlabel("freq/THz"); ylabel("Im(epsilon)"); axis([-inf inf 0 100]); 24 -

example2.m 绘制的结果(与论文中的图对比):

备用主页: <u>https://mbd.pub/o/opt_simul/work</u>

淘宝店铺: <u>https://shop511834854.taobao.com/</u>

031 – [自编软件]石墨烯的光学常数计算软件(exe 应用程序,免费试用版)

基本介绍:

- **主要内容**:本店自主开发的 Kubo 公式及其 4 种近似公式的计算软件, windows 平台 exe 应用程序;
- 计算所需的内存:无;
- 本案例包含一个本店自主开发的软件。

包含的文件截图:

详细描述:

石墨烯(Graphene)由于其优异的可调谐性能,是近几年的热门研究对象。在您的研究中加入石墨烯调谐,有望显著提升论文档次。

计算石墨烯光学常数(电导率、介电常数、折射率)的 Kubo 公式比较复杂,正确计算 该公式耗时耗力。

为此,本店自主开发了 Kubo 公式及其 4 种近似公式的计算软件,是一个独立的 exe 应 用程序,可在 windows 平台运行。这 5 种公式分别为:

Kubo 公式 Hanson 提出的近似公式 Falkovsky 提出的第一种近似公式 Falkovsky 提出的第二种近似公式 Drude 模型近似公式

(转下页)

软件界面:

(转下页)

备用主页: <u>https://mbd.pub/o/opt_simul/work</u>

淘宝店铺: <u>https://shop511834854.taobao.com/</u>

	Optical constant of garphene_132367744890086718.txt - 记事本 一 □
	文件(F) 编辑(E) 格式(O) 查看(V) 帮助(H)
Optical Constants of Graphene	% Kubo
	% mu_c = 0.3eV
选择公式	% Gamma = 0.5meV
Kubo O Falkovsky1 O Falkovsky2	% T = 300K
	% f = 1 10THz
	f/THz Re(sigma)/μS Im(sigma)/μS
公式	1 1284. 01647850831 5309. 71609393772
	1. 18367346938776 931. 188221921623 4557. 7767
明時率为[1-b]: $\sigma(\omega, \mu_c, I, I) = N_g(\sigma_{inter} + \sigma_{inter})$	1. 36734693877551 704. 913390710707 3985. 4579
$\sigma_{intra} = \frac{-ie^2}{2} \left[\sum_{k=0}^{\infty} \overline{\zeta} \left[\frac{\partial f_k(\zeta)}{\partial z} - \frac{\partial f_k(-\zeta)}{\partial z} \right] d\zeta$	1. 55102040816327 551. 586856534174 3537. 3040
$= \pi h^{\circ} (\omega + 2iI)^{\varphi_0} [\partial \zeta \partial \zeta]$	1. 73469387755102 443. 085602071187 3177. 7944
$\sigma_{inter} = \frac{ie^2(\omega + 2i\Gamma)}{\pi \hbar^2} \int_0^\infty \frac{f_d(-\xi) - f_d(\xi)}{(\omega + 2i\Gamma)^2} \frac{d\xi}{d\xi} d\xi$	1. 91836734693878 363. 57653050939 2883. 46311793888
$40^{-1} - 4(\zeta / n)$	2. 10204081032003 303. 019300721303 2038. 3104
其中 $f_d(\zeta) = \exp\left(\frac{\zeta - \mu_c}{\zeta}\right) + 1$	2. 285/14285/1429 257. 31239995078 2431. 10522480350 2. 46029775510204 200, 217552262000 2052, 7556
$\begin{bmatrix} k_{\rm B}T \end{bmatrix}$	2.40950775510204 220.017555200900 2255.7550
1.	2. 0550012244898 191. 555179207517 2100. 29012821095
相対介电常数为[14]: $c_r = 1 + \frac{1\sigma}{\omega \epsilon_r N t_r}$	
and the second s	
折射率方: $n = \sqrt{\varepsilon_r}$	
	计算 😳 2000
波长(λ)、频率(f)、角频率(ω)之间的关系为:	⊑ 1000
$\lambda = c/f$ $\omega = 2\pi f$	
散射率(Γ)、弛豫时间(τ)之间的关系为:	
$\Gamma = 1/(2\tau)$	□ 实部和虚部分开导出 导出 frequency / THz

利用 Hanson 的公式计算了石墨烯在 3 ~ 8 THz 范围内不同化学势的介电常数,并与论 文《A perfect absorber made of a graphene micro-ribbon metamaterial》对比,计算结果与论文 中的图完全一致:

择公式	输入参数	绘图
Kubo O Falkovsky1 O Falkovsky2	化学势 (μc): 0.1 e	V Hanson
Hanson 🔿 Drude like	→ 散射率 (F) 0.1 n	-500
त्ते	弛豫时间 (T)	⇒ -1000
	温度 (T): 300 K	မြို့ -1500
电导率为[11]: $\sigma(\omega, \mu_c, T, T) = N_g(\sigma_{istra} + \sigma_{ister})$	单层石墨烯厚度 (tg): 1 n	m 2500
$\sigma_{intra} = \frac{ie^2k_BT}{\pi\hbar^2(\omega + 2i\Gamma)} \left \frac{\mu_e}{k_T} + 2\ln(1 + e^{-\frac{N_e}{k_BT}}) \right $		-2000
	层数 (Ng): 1	-3500
$\sigma_{inter} = \frac{1e^{-}}{4\pi\hbar} \ln \left \frac{2 \mu_c - (\omega + 2i\Gamma)\hbar}{2 \mu_c + (\omega + 2i\Gamma)\hbar} \right $	起始: 3 T	Hz -4000
	→频率 (f) 结束: 8 T	Hz frequency / THz
相对介电常数为[5]: $\varepsilon_r = 1 + \frac{i\sigma}{\omega \epsilon N t}$	波长 (入)	70
tratury - n - 10		60
$\pi_{133} = \sqrt{\varepsilon_{1}}$	输出参数	Ê 50
波长(2) 「極率(1) 負極率(1)之间的关系为・	 ○ 电导率 ● 相对介电常数 ○ 折射 	
$\lambda = c/f$ $\omega = 2\pi f$	计算	
散射率(Γ)、弛豫时间(τ)之间的关系为:		10
$\Gamma = 1/(2\tau)$	F:\ 选择路	
		frequency / THz
<u>:里說明相參考又刪</u>	(1)	
(a)	(b)	
(a)	(b) 100	μ = 50 meV
(a)	(b)	$-\mu_c = 50 \text{ meV}$
(a)	(b) 100 80	$-\mu_{c} = 50 \text{ meV}$ $-\mu_{c} = 100 \text{ meV}$
(a)	(b) 100 80 100 80 60	$-\mu_{c} = 50 \text{ meV}$ $-\mu_{c} = 100 \text{ meV}$ $-\mu_{c} = 150 \text{ meV}$
(a)	(b) 100 80 $u_c = 50 \text{ meV}$ ω	$-\mu_{c} = 50 \text{ meV}$ $-\mu_{c} = 100 \text{ meV}$ $-\mu_{c} = 150 \text{ meV}$
(a) _c -2 _c -2 	(b) 100 100 80 100 80 100 80 100 80 80 100 80 80 100 80 100 80 100 80 100 80 100 80 100 80 100 80 100 100 80 100 100 80 100 100 100 80 100 100 100 80 1000 1000 100	$-\mu_{c} = 50 \text{ meV}$ $-\mu_{c} = 100 \text{ meV}$ $-\mu_{c} = 150 \text{ meV}$ $-\mu_{c} = 200 \text{ meV}$
(a) _c -2 _c -01 × (3) %	(b) 100 100 80 100 80 80 100 80 80 100 80 80 100 80 100 80 100 80 100 80 100 80 100 80 100 80 100 100 80 100 100 100 80 100 100 100 80 1000 1000 100 100 100	$-\mu_{c} = 50 \text{ meV}$ $-\mu_{c} = 100 \text{ meV}$ $-\mu_{c} = 150 \text{ meV}$ $-\mu_{c} = 200 \text{ meV}$
(a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c	(b) 100 100 80 100 80 80 100 80 80 100 80 80 100 80 100 80 100 80 100 80 100 80 100 80 100 80 100 80 100 100 80 100 100 80 100 100 100 80 1000 1000 100	$-\mu_{c} = 50 \text{ meV}$ \mu_{c} = 100 meV \mu_{c} = 150 meV \mu_{c} = 200 meV
(a) (a) (a) (a) (a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c	(b) 100 100 80 100 80 80 100 80 80 100 80 100 80 100 80 100 80 100 80 100 80 100 80 100 80 100 80 100 100 80 100 100 80 100 100 80 100 100 100 80 1000 1000 100	$-\mu_{c} = 50 \text{ meV} \\ -\mu_{c} = 100 \text{ meV} \\ -\mu_{c} = 150 \text{ meV} \\ -\mu_{c} = 200 \text{ meV} $
(a) ^c 01 × (b) ^c 01 × (b	(b) 100 100 80 100 80 100 80 100 80 100 80 100 80 100 80 100 80 100 80 100 80 100 100 80 100 100 80 100 100 80 100 100 100 80 1000 1000 1000 1000 1000 1000 1000 1000 1	$-\mu_{c} = 50 \text{ meV} \\ -\mu_{c} = 100 \text{ meV} \\ -\mu_{c} = 150 \text{ meV} \\ -\mu_{c} = 200 \text{ meV} $
(a)	(b) 100 100 80 100 80 80 100 80 80 100 80 100 80 100 80 100 80 100 80 100 80 100 80 100 100 80 100 100 80 100 100 100 80 1000 1000 1000 1000 1000 1000 1000 1000 10	$\mu_{c} = 50 \text{ meV}$ $-\mu_{c} = 100 \text{ meV}$ $-\mu_{c} = 150 \text{ meV}$ $-\mu_{c} = 200 \text{ meV}$ 4 = 5 = 6 = 7 = 8

软件截图中计算的是论文中的红色线

如需购买案例请到作者个人主页:<u>http://opt-simul.com/</u> 备用主页:<u>https://mbd.pub/o/opt_simul/work</u> 淘宝店铺:<u>https://shop511834854.taobao.com/</u>

032 – Matlab VO₂的光学常数计算代码(Matlab 文件+参考文献, 189 元)

基本介绍:

- **主要内容**:参考四篇 SCI 论文,基于 Matlab 编写了 VO₂ 的电导率、介电常数、折射率 计算代码,并列举 7 个例子帮助大家理解;
- 计算所需的内存:无;
- 本案例包含 Matlab 程序文件和参考文献。

包含的文件截图:

详细描述:

二氧化钒(VO₂)是一种相变材料,其物理和化学性质可以通过改变温度来大幅度地调节,从而可以用来设计温控器件。

VO₂ 的相变温度在 $T_0 \approx 68$ ℃ 附近,

- · 当温度低于 To 时为绝缘态,展现出电介质的特性
- · 当温度高于 T₀ 时为金属态,展现出金属的特性,可以导电。

VO₂ 的相变特性主要在其电导率、介电常数、折射率等参数上体现出来,也就是说 VO₂ 的这些光学参数不仅是频率(ω)的函数,也是温度(*T*)的函数。更麻烦的是,这些物理量还都 是复数,即:

$$\sigma = \sigma'(\omega, T) + i\sigma''(\omega, T)$$

$$\varepsilon = \varepsilon'(\omega, T) + i\varepsilon''(\omega, T)$$

$$n = n'(\omega, T) + in''(\omega, T)$$

目前人们主要通过两种方式来对 VO2 的光学性质进行建模:

- **第一种**是认为 VO₂ 在任意温度下的介电常数都满足 Drude 模型,然后将等离子体 频率和碰撞频率拟合成温度的函数
- **第二种**是认为 VO₂ 的金属态满足 Drude 模型,绝缘态的介电常数是一个不随温度 变化的常数,而相变温度附近 VO₂ 是金属态和绝缘态的混合物。利用混合物等效 介质理论求出相变温度附近的介电常数

以上两种方式计算起来都比较繁琐,涉及的计算量很大。

为此,本店参考四篇 SCI 论文,基于 Matlab 编写了 VO2 光学常数计算代码。

由于代码量大,列举的 example 多,这里仅展示代码相对较少的 "example2.m" 及其对 应的 "VO2_Choi1996_model()"函数,程序截图如下,注释中详细介绍了每个参数的含义及 参考文献列表:

```
example2.m × +
        % 本例将函数 VO2_Choi1996_mode1() 算出的结果与论文:
 1
        % Ministration property in the second second second second second
 2
        % Fig6ab 中的圆点(实验数据)对比,两者完全一致
 3
 4
 5 -
        clear; clc; clf; close all;
 6
 7 -
        omega_cm = 1600:83:4000;
        1md_um = 1. / (100*omega_cm)*1e6;
 8 -
 9
10 -
        T_{dC} = 88;
        [epsilon, index, sigma] = V02_Choil996_model(1md_um, T_dC, 'steady');
11 -
12
13 -
        figure;
14 -
        plot(omega_cm, real(epsilon), 'o');
15 -
        xlabel('omega(cm^{-1})'); ylabel('epsilon');
        title('Choi1996 Fig. 6(a)');
16 -
17 -
        axis([0, 5000, -100, 20]);
18
19 -
       figure;
        plot(omega_cm, real(sigma)/100, 'o');
20 -
        xlabel('omega(cm^{-1})'); ylabel('sigma(Ohm^{-1} * cm^{-1})');
21 -
22 -
        title('Choi1996 Fig. 6(b)');
        axis([0,5000,0,3000]);
23 -
24
```

备用主页: <u>https://mbd.pub/o/opt_simul/work</u>

exa	ample2.m × VO2_Choi1996_model.m × +	
1	function [epsilon, index, sigma] = V02_Choi1996_mode1(1md_um, T_dC, state)	<u>^</u>
2	□% 本程序用于计算二氧化钒(VO2)的相对介电常数、折射率、电导率	
3	% 适用温度: 无限制	
4	% 适用波长: 2.5 [~] 6.3 um	
5	%%%% 输入参数:	
6	% 1md_um - 波长,单位 um <<<<<<< 注意单位 <<<<<<<<	
7	% T_dC - 温度, 单位摄氏度	
8	% state — 表示升温、降温或稳态,输入'up'、'down'或'steady'	
9	%%%% 输出参数:	
10	% epsilon - 相对介电常数	
11	% index - 折射率	≡
12	% sigma - 电导率,单位: S/m	
13	%%%% 参考文献:	
14	5 Ein beinentigengenehm eine Wit ellie were eine weni densigene versichen.	
15	-9 listair ionaistan alkana manai nian iara 191 minis di incatsarran airdi sandharmi anarrannan y	
16		
17 -	☐ if(min(1md_um) < 2.5 max(1md_um) > 6.3)	
18 -	epsilon = NaN; index = NaN; sigma = NaN; return;	
19 —	- end	
20		
21	□ %% 定义常数	
22 —	eps0 = 8.854187817e-12;	
23 —	e0 = 1.602176634e-19;	
24 -	c = 299792458;	
25 —	h = 6.62607015e-34;	
00		¥

example1.m 绘制的结果:

example2.m 绘制的结果:

如需购买案例请到作者个人主页:<u>http://opt-simul.com/</u> 备用主页:<u>https://mbd.pub/o/opt_simul/work</u> 淘宝店铺:<u>https://shop511834854.taobao.com/</u>

example3.m 绘制的结果:

example5.m 和 example6.m(内插图)绘制的结果:

如需购买案例请到作者个人主页:<u>http://opt-simul.com/</u> 备用主页:<u>https://mbd.pub/o/opt_simul/work</u> 淘宝店铺:<u>https://shop511834854.taobao.com/</u>

example7.m 绘制的结果:

备用主页: <u>https://mbd.pub/o/opt_simul/work</u>

淘宝店铺: https://shop511834854.taobao.com/

033 – [自编软件] VO2 的光学常数计算软件(exe 应用程序,免费试用版)

基本介绍:

- **主要内容**:本店参考四篇 SCI 论文,自主开发了计算 VO₂ 电导率、介电常数、折射率 的计算软件,windows 平台 exe 应用程序;
- 计算所需的内存:无;
- 本案例包含一个本店自主开发的软件。

包含的文件截图:

详细描述:

二氧化钒(VO₂)是一种相变材料,其物理和化学性质可以通过改变温度来大幅度地调节,从而可以用来设计温控器件。

VO₂ 的相变温度在 $T_0 \approx 68$ ℃ 附近,

- · 当温度低于 T₀ 时为绝缘态,展现出电介质的特性
- · 当温度高于 T₀ 时为金属态,展现出金属的特性,可以导电。

VO₂ 的相变特性主要在其电导率、介电常数、折射率等参数上体现出来,也就是说 VO₂ 的这些光学参数不仅是频率(ω)的函数,也是温度(*T*)的函数。更麻烦的是,这些物理量还都 是复数,即:

$$\sigma = \sigma'(\omega, T) + i\sigma''(\omega, T)$$

$$\varepsilon = \varepsilon'(\omega, T) + i\varepsilon''(\omega, T)$$

$$n = n'(\omega, T) + in''(\omega, T)$$

目前人们主要通过两种方式来对 VO2 的光学性质进行建模:

- · 第一种是认为 VO₂ 在任意温度下的介电常数都满足 Drude 模型, 然后将等离子体 频率和碰撞频率拟合成温度的函数
- · 第二种是认为 VO₂ 的金属态满足 Drude 模型,绝缘态的介电常数是一个不随温度

备用主页: <u>https://mbd.pub/o/opt_simul/work</u>

淘宝店铺: <u>https://shop511834854.taobao.com/</u>

变化的常数,而相变温度附近 VO₂ 是金属态和绝缘态的混合物。利用混合物等效 介质理论求出相变温度附近的介电常数

以上两种方式计算起来都比较繁琐,涉及的计算量很大。

为此,本店参考四篇 SCI 论文,自主开发了 VO₂ 光学常数计算软件,是一个独立的 exe 应用程序,可在 windows 平台运行。

软件界面:

备用主页: https://mbd.pub/o/opt simul/work

淘宝店铺: https://shop511834854.taobao.com/

计算结果验证:

文献[1]中的Fig.6a (左图) 和本软件 "Choi1996 (model)" 计算的结果 (右图) 对比

如需购买案例请到作者个人主页:<u>http://opt-simul.com/</u> 备用主页:<u>https://mbd.pub/o/opt_simul/work</u> 淘宝店铺:<u>https://shop511834854.taobao.com/</u>

文献[2]中的Fig.3 (左图)和本软件 "Kana2016 (model)" 计算的结果 (右图) 对比

如需购买案例请到作者个人主页:<u>http://opt-simul.com/</u> 备用主页:<u>https://mbd.pub/o/opt_simul/work</u> 淘宝店铺:<u>https://shop511834854.taobao.com/</u>

备用主页: <u>https://mbd.pub/o/opt_simul/work</u>

034 - COMSOL 编写代码绘制几何:小球随机嵌在大球中(仅模型文件, 30 元)

基本介绍:

- **主要内容**:利用 COMSOL 自带的脚本工具编写代码,绘制复杂的几何结构,本案例绘制了"小球随机嵌在大球中",具体请看下面图片;
- 使用的软件版本为 COMSOL 5.4 (5.4.0.225);
- 计算所需的内存:无;
- 涉及的内容: App 开发器, 模型方法;
- 本案例仅包含模型文件(但有一个如何使用代码的说明文档)。

包含的文件截图:

📓 【其他您可能感兴趣的仿真案例】.png	
🔁 操作说明.pdf	
🕒 小球随机嵌在大球中-几何结构.mph	

详细描述:

1、打开模型后看到下图所示的界面,图中左侧的"全局定义-参数 1"中定义了 大球的半径 R0 = 100 nm、小球半径 r0 = 1.5 nm、共画了 300 个小球。

🍯 🗅 📂 🔜 💀 🕨 かけ 🖻 🛍 🖷 🏢 🎆 🍇 尾 🔹		小	球麵机嚴在大球中-几何结构.mph - COMSOL Multiphysics	– Ø ×
文件 主屏幕 定义 几何 材料 物理场 网格	研究 结果 开发工具			2
A Op ar 支量 正日号入 App 銀井 参数 Pi 参数 参数 全部均進 全部均進 App 銀井 参数 Pi 参数 Pi 参数 全部均進 全部均進	k 通加材料 电磁波、频域 添加的速程	■ ▲ = ~ 和建网格 网 格注 / 目 研 指1・ 同格 研		
模型开发器	 役置 参数 杨密: 参数1 	E		
(1) ● 原本(道行之前必然的所有小技能制法) (2) 日外4 (道行之前必然的所有小技能制法) (2) 日外 (1) 日本(1) (1) 日 (2) 日本(1) (1) 日 (2) 日本(1) 日本(1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	 ● 条数 ● 条数 ● 条数 ● 条数 ● 数法支払 ● 80 ● 100(mm) ● 15.5 ■ 15.5(mm) ● 15.5 ■ 15.5(mm) ● 15.5 ■ 15.5(mm) ● 15.5(mm)<td> 描述 *m 大陸半径 · 今m · 八陸半径 · 八陸小役 · 八陸小役 · · · · · · · · · · · · · · · · · · ·</td><td></td><td>m 0 0 0 0 0 0 0 0 0 0 0 0 0</td>	描述 *m 大陸半径 · 今m · 八陸半径 · 八陸小役 · 八陸小役 · · · · · · · · · · · · · · · · · · ·		m 0 0 0 0 0 0 0 0 0 0 0 0 0
	5. 可 而 #=		× 6	
			892 MB 1012 MB	A CONTRACT OF

2、展开左侧的"几何 1",如下图,可以看到1个大球和 300 个小球的对象。

- 3、如果要更改参数,例如将大球半径改为 300 nm、小球半径改为 20 nm、画 100 个小球,按照下面的方法操作:
- (1) 在"参数1"中修改参数,如下图:

🍽 🗅 📂 🔒 🕺 🕨 🕇 🔿 🖉 🖷 👘 🖷 🕅 🕅	R			
文件▼ 主屏幕 定义 几何 材料 物理场	网格 研究	结果 开发	Г具	
A 〇〇 Pi a= 变量・ fx)函数・ 匹导, App 开发器 App 24件 ・ 参数 ・ Pi 参数突的 金数 Call App 模型 定义 几何	入 reLink ▼ 添加		频域 添加物理场 物理场	や建网格 の 格1・ 网格
模型开发器 ← → ↑ ↓ ☞ < 盲↑ 盲↓ 目 < ▲ ◆ 小球随机嵌在大球中-几何结构.mph (root)	设置 参数	1		F
▲ (冊) 全局定义 Pi 参数 1	▼ 参数			
 ◎ 画小球(运行之前必须把所有小球都删去) ◎ 材料 ▲ 1 (comp1) 	^い 名称 R0	表达式 300[nm]	值 3E-7 m	描述 大球半径
 ▶ 三 定义 ▶ 八 几何 1 ● 林料 	r0 num_small	20[nm] 100	2E-8 m 100	小球半径 小球个数
 ▷ [Mu] 电磁波, 频域 (ewfd) ▲ 网格 1 ▷ ▷ 400 研究 1 ▷ • ● 结果 				

(转下页)

(2) 在"几何1"中将所有的小球删去,只保留大球,如下图:

(3)选中"画小球(运行之前必须把所有小球都删去)",并运行此方法调用, 如下图:

(4)这样就画出了结构,如下图。由于小球是随机画出的,所以您的小球的排 列方式会与我下面的截图不一样:

备用主页: <u>https://mbd.pub/o/opt_simul/work</u>

淘宝店铺: <u>https://shop511834854.taobao.com/</u>

035 - COMSOL 编写代码绘制几何:小球密排在大球表面(仅模型文件, 30 元)

基本介绍:

- **主要内容**:利用 COMSOL 自带的脚本工具编写代码,绘制复杂的几何结构,本案例绘制了"小球密排在大球表面",具体请看下面图片;
- 使用的软件版本为 COMSOL 5.4 (5.4.0.225);
- 计算所需的内存:无;
- 涉及的内容: App 开发器, 模型方法;
- 本案例仅包含模型文件(但有一个如何使用代码的说明文档)。

包含的文件截图:

详细描述:

1、打开模型后看到下图所示的界面,图中左侧的"全局定义-参数 1"中定义了 大球的半径 R0=150 nm、小球半径 r0=2.5 nm、相邻小球的平均距离约 25 nm。

🔍 🗅 📂 🔒 🔯 🕨 ち ぐ 暗 信 语 📋 🗮 🕷 尾 •	小球密排在大球表面.mph - COMSOL Multiphysics	– a ×
文件 王屏幕 定义 几何 材料 物理场 网格 研	究 结果 开发工具	2
A 公 Pi Pr Pr<		
模型开发器 ← → ↑ ↓ ▼ ・ 町 型 目 ↓ ▲ ③ 小球車線在大球表面 mph (root) ▲ ③ 全現型义	2021 学会 第版 ●和1 同 「 日 一 日 日 日 一 日 日 一 日 日 日 一 日 日 日 一 日 日 日 一 日 日 日 日	
2 単数1 第二十四、天伝が実体化会小2010年、)	▼ 参数 100	nm
 □ 初料 ▲ 個料 ▲ 個計 1 (comp1) >> 三叉 >> 八 几回 1 □ 初料 ▲ 同時 1 >> 通 结果 	** 単位式 価値 単位 80 300(em)(2 25.5-7 m 大部坦母 90 25.5-7 m 大部坦母 100 90 25.5-8 m 小部坦母 100 90 25(rm) 2.55-8 m 小部坦母 90 2.55-8 m 100-5120(F10)(EM)	0 -100 0 nm -100
	68: x 0 #35:0 x -100 x #35:0 x -100 x	1C3
	17540 ··· ALMA HIND ANTH	
	× #IM44	
	1.98 GB 2.05 GB	

2、展开左侧的"几何 1",如下图,可以看到1个大球和许多小球的对象。实际 上这里面一共有 422 个小球。

3、如果要更改参数,例如将大球半径改为200nm、小球半径改为2nm、相邻小球的平均距离约20nm,按照下面的方法操作:

(1) 在"参数1"中修改参数,如下图:

🏴 🗅 📂 🔒 😣 🕨 🕇 👌 🖬 🛍 🖆 🏢 🎆 🔩 र					小球密排
文件▼ 主屏幕 定义 几何 材料 物理场 网格 研究	结果	开发工具			
A ↔ Pi a= 变量 ↓ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	した 加材料 选述 材料	全部理场接口 添加物 的理场	建场 构建网格	▲ 一 一 一 一 一 一 一 一 一 一 一 一 一	
模型开发器 ← → ↑ ↓ ☞ ▼ III III III ▼ ▲ ③ 小球密排在大球表面.mph (root) ▲ 働 全局定义	设置 参数 标签: 参数	1			Ţ
Pi 参数1 43 画小球(法行前法将所有小球删集)	▼ 参数				
□ □ □ ス(2=1)#0((+0)/(=) ス(2022)) ■ 材料	^{>>} 名称	表达式	值	描述	
▲ 盲 组件 1 <i>(comp1)</i>	RO	400[nm]/2	2E-7 m	大球半径	
	r0	4[nm]/2	2E-9 m	小球半径	
	PO	20[nm]	2E-8 m	相邻小球的平均距离	寄
■ <u>■</u> 12/~T ▲ 网格 1					
A L L L L L L L L L L L L L L L L					

(2) 在"几何1"中将所有的小球删去,只保留大球,如下图:

🚨 🕒 J	- 🗔 🖪	•) (* 🖻	Ê 🗗	1	
文件▼	主屏幕	定义	几何	材料	物理	汤 1
A ^{App} 开发器		Pi 参数	a= 变量 f(x)函数 P _i 参数3	• • ⊊例 [≦]	部构建	匠导) <mark>⇔</mark> Live
Арр	模型		定义			几何
模型) ← →	∓发器 ↑ ↓ ☜		≣↓ III •	•		* #
4 🔇 小	球密排在大	球表面.	mph <i>(roo</i>	t)		
€) 全局定义					
	Pi 参数	1 */>=<=:		. I. I+00 +		
	 「三」回小い **** 	※(1241丁)	則資格所有	小球動去	:)	
4 🖬	■1204-7	comp1)				
⊳	□ 定义	.0111017				
	<mark>)</mark> 人 八何	1				
	6 * ★	球 (sph	1)			
	📃 形	(成联合(\$ (fin)			
	■ 材料					
_	🗟 网格	1				
⊳ ↓	」结果					

(3)选中"画小球(运行之前请将所有小球都删去)",并运行此方法调用,如下图:

(4) 这样就画出了结构,如下图。画完之后还会提示"共有1224个小球":

备用主页: <u>https://mbd.pub/o/opt_simul/work</u>

淘宝店铺: <u>https://shop511834854.taobao.com/</u>

036 - FDTD 纳米线的光散射(仅模型文件,免费)

基本介绍:

- **主要内容**:本案例通过 matlab 解析和 FDTD 模拟分别计算了半径 100 nm 的纳米线对 TM 光的散射截面,两者完全吻合;
- 基于 Lumerical FDTD Solution 求解,使用的软件版本为 Lumerical 2020 R2;
- 计算所需的内存: 1 GB;
- 涉及的内容: 2D-FDTD、场监视器、cross-section 分析组、matlab 编程 等;
- 绘制了: 散射截面随波长的关系、电场分布;
- 本案例仅包含模型文件,但有一个文字版的建模过程详解。

包含的文件截图:

详细描述:

如右图所示,用 TM 偏振的平面光照射一根无限长的介质纳米线,纳 米线的半径为 100 nm,折射率为 2。本案例用 FDTD 模拟了 400~800 nm 波长范围内的光散射截面以及电场分布,并将结果与 matlab 解析计算的 散射截面相比较。

计算的内容和结果:

- 备用主页: https://mbd.pub/o/opt simul/work
- 淘宝店铺: <u>https://shop511834854.taobao.com/</u>

037 - COMSOL 纳米线的光散射(仅模型文件,免费)

基本介绍:

- **主要内容**:本案例通过 matlab 解析和 COMSOL 模拟分别计算了半径 100 nm 的纳米线 对 TM 光的散射截面,两者完全吻合;
- 基于 COMSOL 频域求解,使用的软件版本为 COMSOL 5.4 (5.4.0.225);
- 计算所需的内存: 4 GB;
- 涉及的内容: 自定义方程、组件耦合-积分 等;
- 绘制了: 散射截面随波长的关系、电场分布;
- 本案例仅包含模型文件,但有一个文字版的建模过程详解。

包含的文件截图:

详细描述:

如右图所示,用 TM 偏振的平面光照射一根无限长的介质纳米线,纳 米线的半径为 100 nm,折射率为 2。本案例用 COMSOL 模拟了 400~800 nm 波长范围内的光散射截面以及电场分布,并将结果与 matlab 解析计算 的散射截面相比较。

计算的内容和结果:

备用主页: <u>https://mbd.pub/o/opt_simul/work</u>

淘宝店铺: <u>https://shop511834854.taobao.com/</u>

038 – FDTD MIM 波导电磁感应透明(含演示, 50元)

基本介绍:

- **主要内容**:根据发表在 *Plasmonics* 上的论文《Plasmon-Induced Transparency and Refractive Index Sensing in Side-Coupled Stub-Hexagon Resonators (作者: Chuan Wu 等)》,复现了 其中的 Fig.2;
- 基于 Lumerical FDTD Solution 求解,使用的软件版本为 Lumerical 2020 R2;
- 计算所需的内存: 4 GB;
- **涉及的内容**:在 structure group 中编写脚本画几何结构、自定义 Drude 模型材料、模式 光源、2D-FDTD 等;
- 绘制了:透射率随波长的变化曲线、磁场分布;
- 建模过程录制了时长为 22 min 的演示视频(没有声音)。

包含的文件截图:

详细描述:

如上图所示,由 Ag 和空气缝隙构成一个 MIM 波导,波导旁边设置一个六边形的谐振 腔。图中 W = 50 nm, $W_B = 140$ nm, $L_B = 120$ nm, $L_D = W_B = 140$ nm, g = 30 nm。Ag 材料用 Drude 模型描述:

$$\varepsilon(\omega) = \omega_{\infty} - \frac{\omega_{p}^{2}}{\omega^{2} + i\omega\gamma}$$

其中 ω_{∞} =3.7, ω_{p} =9.1 eV, γ =0.018 eV。

入射光从波导左端入射后,仿真右端出口的透射率和整体的磁场分布。

计算的内容和结果:

(转下页)

透射率曲线和三个不同波长处的磁场 Hz 分布。上:论文中的图,下:本案例做出来的结果

备用主页: <u>https://mbd.pub/o/opt_simul/work</u>

淘宝店铺: <u>https://shop511834854.taobao.com/</u>

039-COMSOL 三层薄膜的反射率(含讲解,50元)

基本介绍:

- **主要内容**: 根据发表在 *Plasmonics* 上的论文《Reflective Color Filters and Monolithic Color Printing Based on Asymmetric Fabry–Perot Cavities Using Nickel as a Broadband Absorber (作者: Zhengmei Yang 等)》,复现了其中的 Fig.1d 中的红线;
- 基于 COMSOL 频域求解,使用的软件版本为 COMSOL 5.4 (5.4.0.225);
- 计算所需的内存: 4 GB;
- 涉及的内容: 全局参数、自定义材料、周期性端口、周期性边界条件、自定义网格 等;
- 绘制了:反射率随波长的变化曲线;
- 建模过程录制了时长为 27 min 的讲解视频。

包含的文件截图:

index_Al_k.txt
 index_Al_n.txt
 index_Ni_k.txt
 index_Ni_n.txt
 Reflective Color Filters and Monolithi...
 计算结果.png
 研解视频.mp4
 三 三层膜.mph

详细描述:

如右图所示,由 Ni、SiO₂、Al 三种材料构成薄膜, 厚度分别为 *t* = 6 nm, *d* = 170 nm, *h* = 100 nm。计算波长 为 400~800 nm 的光从上往下正入射时的反射率。

计算的内容和结果:

d=170 nm时的反射率。左图红色线:论文中的结果,右图:本案例的结果

备用主页: <u>https://mbd.pub/o/opt_simul/work</u>

淘宝店铺: <u>https://shop511834854.taobao.com/</u>

040 - COMSOL 等离激元超透镜(含演示, 75 元)

基本介绍:

- 主要内容:根据发表在 *Plasmonics* 上的论文《Super-Resolution Long-Depth Focusing by Radially Polarized Light Irradiation Through Plasmonic Lens in Optical Meso-field(作者: Ruobing Peng 等)》,复现了其中的 Fig.2;
- 基于 COMSOL 频域求解,使用的软件版本为 COMSOL 5.4 (5.4.0.225);
- 计算所需的内存: 4 GB;
- 涉及的内容:二维轴对称建模、全局参数、全局解析函数、完美匹配层、自定义材料、 散射边界条件、径向偏振环形光源的设置、对数据集的操作、视图的不等比例缩放等;
- 绘制了: 电场分布、焦平面上的三维可视化光强、光轴上的光强分布 等;
- 建模过程录制了时长为 29 min 的演示视频。

包含的文件截图:

详细描述:

如右图所示,在玻璃衬底上镀一层 405nm 厚的银膜, 然后再在银膜上刻蚀同心环状凹槽,形成一个超透镜。图中 $d_0 = 75$ nm, p = 300 nm, w = 70 nm, h = 405 nm, R = 1.83 um。

波长 632.8 nm 的径向偏振环形光源从玻璃衬底中垂直 入射,一部分光利用"等离激元增强透射"效应通过最外圈 凹槽到达环形光栅处,然后利用光栅的泄露模式转换成自 由空间中的电磁波离开光栅,并实现聚焦。

计算的内容和结果:

1、xz 截面上的电场分布。左:论文中的图,右:本案例的结果

2、焦平面上的光强三维可视化光强。左:论文中的图,右:本案例的结果

3、焦平面上r方向和z方向上的光强曲线。左:论文中的图,右:本案例的结果

4、光轴上的光强曲线。左:论文中的图,右:本案例的结果

